Individual CH Bond Strengths in Simple Organic Compounds: Effects of Conformation and Substitution

By D. C. McKean DEPARTMENT OF CHEMISTRY, UNIVERSITY OF ABERDEEN, ABERDEEN, AB9 2UE

1 Introduction: 'Isolated' CH Stretching Frequencies, ν (CH)^{is}

The purpose of this article is to review the recent evidence for the strengths of individual CH bonds which has been obtained from a study of CH stretching frequencies in incompletely deuteriated compounds, and to discuss its implications in the fields of molecular geometry, chemical kinetics, bonding theory, and substituent effects.

The data obtained indicate the strength of the CH bond in its *equilibrium* state, as does the bond length, in contrast to the dissociation energy D°_{298} , which measures the *difference* between the energy of the equilibrium state, and that of its dissociated products. As will be seen later, these two kinds of 'bond strength' are often, though not always, related.

The data are largely new, and precise to an extent rarely possible from conventional studies of CH stretching frequencies of normal, undeuteriated species. In the latter, the vibrational spectrum is highly complicated, mainly due on the one hand, to effects of coupling between CH bonds in CH₃ and CH₂ groups to give symmetric and antisymmetric stretching modes, and on the other, to Fermi resonances between these and overtones of CH₃ and CH₂ bending modes. These difficulties are almost always removed by the observation of CH stretching frequencies in which all hydrogens are deuteriated except for one. For example in a methyl compound, the CHD_2 derivative is studied. In such compounds the CH bending modes are much lower than in the CH₃ one, and Fermi resonances become insignificant in the CH stretching region. Moreover the coupling to other motions of the CH stretching is minimal, probably amounting to less than 10 cm⁻¹ in ν (CH). Such frequencies have been termed 'isolated' ones, [symbol ν (CH)^{is}].¹ While they may be used to calculate individual CH bond stretching force constants, the *variation* in coupling to other motions is so small, probably less than 5 cm⁻¹ in ν (CH),² that the ν (CH)^{is} values may be used directly as a measure of strength.

One of the most pleasing results of CHD_2 substitution in a methyl compound is the demonstration of the presence of more than one type of CH bond, in that

¹ D. C. McKean, Spectrochim. Acta, 1975, 31A, 861.

^a D. C. McKean, Spectrochim. Acta, 1973, 29A, 1559.

group, from a single spectrum. This was first carried out by Saur, Lavalley, and Romanet in CH_3CH_2X compounds, where X was Cl, Br, or COOH.³ The potential barrier opposing internal rotation of the CH_3 group is sufficiently high that a solitary CH bond in a CHD_2 group produces two conformers, one in which the hydrogen is *trans* to a CH bond in the CH_2 group, the other in which it is *trans* to the CX bond. The barrier is of course low enough to ensure that both conformers are always present. Two bands are then seen in the i.r. spectrum.* In the spectrum of $(CHD_2)_2NH^4$ three i.r. bands are seen, as in Figure 1. Here the solitary CH bond can be *trans* either to H, or to the other methyl group, or to the lone pair of electrons.[†]

Figure 1 Infrared spectrum in gas phase of $(CHD_2)_2NH^{.35}$ CH^X signifies the CH bond trans to group X

*The success of this experiment depends on the short time scale of the i.r. absorption process. The longer time scale required for the n.m.r. experiment means that only an average signal from both kinds of proton is observed in the latter.

[†]The spectrum is *not* complicated by the presence of *two* CHD_2 groups. Coupling between two CH bonds separated by another atom such as C, N, or O has been shown to be negligible.⁴

³ O. Saur, J. C. Lavalley, and R. Romanet, Compt. rend., 1969. 269, B, 816.

⁴ D. C. McKean, Chem. Comm., 1971, 1373.

The first appreciation of the quantitative value of such CHD_2 frequencies appears to have been made by Allan and McKean, in a study of (CHD₂)₂O.⁵ The foundation for the use of CH stretching frequencies for the prediction of bond lengths and dissociation energies, however, was laid in 1962 by Bernstein,⁶ who correlated 'average' stretching frequencies for CH₃, CH₂, and CH groups with bond length and dissociation energy, respectively. These 'average' ν (CH) data however are only physically meaningful if all the CH bonds in the one group are identical, and even then they are subject to error due to Fermi resonances, being derived from frequencies of the normal, undeuteriated species.

2 The Quantitative Use of ν (CH)^{is} Values

A. ν (CH)^{is} Values and Predictions of Molecular Geometry.— ν (CH)^{is} values may be used generally for the prediction of CH bond lengths, and, in the case of certain CH_3 groups, for the prediction of HCH angles. For bond lengths, the correlation curve of Figure 2 is employed.7 The experimental bond lengths are confined to spectroscopic r_{o} or r_{s} values, for maximum compatibility.* Between 3050 and 2800 cm⁻¹, the data are well fitted by the equation $r_0(\text{\AA}) = 1.402$ – 0.000 103 5v(CH)^{is}.

Two pairs of points, those for Me_2O and Me_3N , are particularly pleasing, since in each compound both the i.r. ν (CH)^{is} bands and the microwave structures indicate the presence of two types of CH bond, the resulting pair of points lying close to the correlation curve.

Another encouraging feature has been the number of occasions on which improvement in the precision or in the interpretation of a microwave spectrum has resulted in moving a point much nearer the curve, e.g. for HCNO,8 CH₃CN,9 $CH_3C \equiv CH$ ¹⁰ and CH_3F ¹¹ Two notable anomalies remain, however, as previously noticed by Bernstein, viz. CHF₃ and CHCl₃. For these the microwave CH bond lengths are greater by 0.014 Å and by 0.015 Å than those predicted from ν (CH).[†] Apart from these, one can predict bond length differences with an accuracy of about ± 0.0005 Å, since the slope of the curve is approximately 10 cm⁻¹ per 0.001 Å, and the uncertainty in ν (CH)^{is} is less than 5 cm⁻¹ (due mainly to variations in coupling, not to experimental inaccuracy). This accuracy of

 \dagger Assuming $r_{\rm o} = r_{\rm s} + 0.003$. A smaller discrepancy of 0.009 Å, possibly having the same origin, occurs in Me₃CH, for the tertiary CH bond.¹²

- ⁸ A. Allan and D. C. McKean, 'International Congress on Molecular Spectroscopy', Liège 1969; A. Allan, D. C. McKean, J. P. Perchard, and M. L. Josien, Spectrochim. Acta., 1971, 27A, 1409.
- ⁶ H. J. Bernstein, Spectrochim. Acta, 1962, 18, 161.
- ⁷ D. C. McKean, J. L. Duncan, and L. Batt, Spectrochim. Acta, 1973, 29A, 1037.
- ⁸ B. P. and M. Winnewisser, and F. Winther, J. Mol. Spectroscopy, 1974, 51, 65.
- ⁹ J. L. Duncan, D. C. McKean, and N. D. Michie, *J. Mol. Structure*, 1974, **21**, 405. ¹⁰ J. L. Duncan, D. C. McKean, P. D. Mallinson, and R. D. McCulloch, *J. Mol. Spectro*scopy, 1973, 46, 232.
- ¹¹ D. F. Eggers, J. Mol. Structure, 1976. 31, 367.
- ¹² D. C. McKean, S. Biedermann, and H. Bürger, Spectrochim. Acta, 1974, 30A, 845.

^{*}In the original plot, 0.003 Å was added to each $r_{\rm s}$ value, as for some molecules there is reason to suppose $r_0 \approx r_s + 0.003$ Å. In olefinic CH bonds, however, there is little evidence to support this.

 ± 0.0005 Å greatly exceeds the precision of most microwave determinations. It has therefore been of considerable interest to discover that *ab initio* calculations, aided by the force method of Pulay for optimizing geometry,¹³ reproduce many of the CH bond length *variations* to 0.001 Å or better. Table 1 shows some recent

Figure 2 Correlation between ν (CH)^{is} and r_0 (CH).⁷ The dotted line for CH₃CN shows the improvement due to a recent redetermination of geometry⁹

¹³ P. Pulay, Mol. Phys., 1969, 17, 197.

ol ⁻¹ D°_{298} (obs.)/kcal mol ⁻¹	104.0^{a}	984	95a		98a	92ª			99.3ª	88.34	100.44	96.8a	108ª							110.5ª	128ª		93.9h	; g ref. 24; h ref. 25; p = primary.
D°_{298} (<i>pred.</i>)/kcal m	103.2	9.66	97.0	9.66	98.4	94.8	0.66	97.3	98.2	99.4	108.7	100.1	108.7		105.0	109.4	107.3	108.2	108.1	109.5		~ 128	100.3	ion 3G; ^e ref. 23; ^f ref. 1
$r_{ m o}-r_{ m e}/{ m \AA}$	0.011	0.013(5)	0.014(5)	0.013(5)	0.014						0.013(5)		0.012(5)		0.014	0.012(5)	0.013				0.009	0.010	0.013	also text, Sect
^{-е} (4—31G)/Å	1.081^{b}	1.083^{b}	1.085^{b}	1.083	1.084^{b}						1.072^{b}		1.073^{b}		1.076^{b}	1.072^{b}	1.074^{b}				1.051	1.0509	1.0839	munication; see
$r_0(bred.)/Å$	1.092	1.096(5)	1.099(5)	1.096(5)	1.098	1.102(5)	1.097	1.099	1.098	1.097	1.085(5)	1.096	1.085(5)		1.090	1.084(5)	1.087	1.086	1.086	1.084(5)	1.060	1.060	1.095(5)	nbe, personal com
CH) ^{is/cm⁻¹}	2992"	2950ª	2920^c	2950¢	2936^{c}	2894 c	2943c	2924^{c}	2934"	2947^{d}	3056"	2956"	3055 ^e		30137	30647	3039/	30507	3049^{a}	3065a	3336^{a}	3334^{a}	2958a	12; ^d J. Lascon
ъ,			s—H	p—H ^{Me}	HHd	tH	p—H ^{Me}	hHHd	I	Me				<u> </u>	H_{lpha}	H_t	H_c	H ₂	H_2			ac—H	Me—H	21, 22a; ^c ref.
	CH_4	C_2H_6	(CH ₃) ₂ CH ₂			(CH ₃) ₃ CH			(CH ₃) ₄ C	PhCH ₃	cycloC ₃ H ₆	cyclo-C4H ₆	C_2H_4	CH ₃ CH=Cl				(CH ₃) ₂ CC	CH ₂ -C C	C ₆ H ₆	C_2H_2	CH ₃ -CCH		aref. 7; brefs.

Table 1 $\nu(CH)^{is}$ and predictions of $r_{0},\,D^{\circ}_{298}$ in some hydrocarbons

403

McKean

examples of this amongst hydrocarbons, other examples being found in other tables. It may be concluded that a very simple i.r. experiment yields at least one geometric parameter, r°_{CH} , more accurately than any other known method.

The correlation between $\nu(CH)^{is}$ and the HCH angle for methyl groups is shown in Figure 3.¹⁴ For the line drawn, $a^{\circ}_{HCH} = 0.0471\nu(CH)^{is} - 31.1$. It appears to hold for symmetric CH₃ groups, excluding CH₃F, and also, rather well, for CH₃XY₂ type compounds in which internal rotation is essentially free. For these last, the *average* $\nu(CH)^{is}$ frequency is used (see further, below). For asymmetric CH₃ groups it enables a rough estimate to be made of *average* HCH angles, except where CH₃N or CH₃O are present. One success of the correlation was the prediction of 107.0° for the HCH angle in Me₄C. A recent experimental determination yields 106.6° for this quantity.¹⁵ No such correlation exists for HCH angles in methylene groups in general, but a rough one for C --CH₂ systems is evident in the data compiled by Duncan.¹⁶ It is not linear.

Figure 3 Correlation between $\nu(CH)^{is}$ and αHCH in symmetric CH_3 groups (points denoted +). Points denoted \bigcirc are for asymmetric methyl groups which undergo free internal rotation, using $\nu(CH)^{av,ts} = \frac{1}{2}[\nu(CH)_{\parallel} + \nu(CH)_{\perp}]$ (no error indicated)

¹⁴ D. C. McKean, J. Mol. Structure, 1976, 34, 181.

- ¹⁵ L. S. Bartell and W. F. Bradford, J. Mol. Structure, 1977, 37, 113.
- ¹⁶ J. L. Duncan, Spectrochim. Acta, 1970, 26A, 429.

B. ν (CH)^{is} Values and Predictions of Dissociation Energies: Applications in Chemical Kinetics.—Predictions of D°_{298} for the CH bond may be made using the correlation curve of Figure 4, based on experimental D°_{298} values, for the most

Figure 4 Correlation between ν (CH)^{is} and dissociation energy, D[°]₂₉₈, in kcal mol^{-1,7} The newer experimental D[°] value of 119.2 for HCN¹⁷ clearly conflicts with that for C₂H₂ and with the general trend of the lower points

part derived from kinetic measurements.⁷ The curve is drawn so as to lie close to points for compounds such as hydrocarbons which are likely to dissociate into radicals in which stabilization energy is negligible. Between 2700 and 3100 cm⁻¹, D°_{298} (kcal) = 0.08616 ν (CH)^{is} - 154.6. The upper end of the curve was originally fixed by an earlier experimental D° value for HCN of 130.8 kcal mol⁻¹. This is now thought to be somewhat lower, at 119 kcal,¹⁷ which may indicate that a little curvature is needed at the upper end of the plot. All the deviant points lie below the plot, the lowest being those in which stabilization energy, accompanied by marked change in geometry, has long been associated with the radical formed, e.g. CH₂CN, CH₂Ph. For each of four compounds, (CH₃)₂CO, CH₃OH, CH_3NH_2 , and $(CH_3)_2O$, two points are plotted, thus $\Box - \Box$. This is because they each have two ν (CH)^{is} values, but only one experimental D°_{298} value. It may be significant that the point for the lower ν (CH)^{is} value in each case lies closer to the correlation curve, which is understandable if in the dissociation process it is only the weaker CH bond in the methyl group which is broken. The relevance of this to kinetic processes in which the rate-determining step is the breaking of a CH bond, seems obvious. The gradient of the curve, approximately 0.9 kcal mol^{-1} per 10 cm⁻¹, implies that in the same methyl group, differences in dissociation energy, and therefore of activation energy, of the order of 3-5 kcal mol⁻¹ are common, and for CH₃-O and CH₃-N compounds are much greater, the highest difference found being 13 kcal mol⁻¹ in trimethylamine. These differences are quite large enough to imply that only the weaker bond stands a chance of being broken in the kinetic process. This conclusion of course assumes an 'adiabatic' process in which the conformation of the methyl group is maintained, and that no stabilization energy is involved. It may be argued that the dissociation process should be considered to involve some kind of averaging of the separate strengths of the bonds in an asymmetric methyl group, particularly if internal rotation is essentially free. Against this, it must be stated firstly that there is clear evidence (see Section 3G) that CH bond strengths vary during a free internal rotation, secondly that in any event free rotation in the transition state seems highly unlikely, and thirdly that in a bimolecular breaking of the bond, the conformation of the CH bond, relative to the framework which causes the asymmetry, will probably be determined by the incoming trajectory of the colliding species. Thus for CH₃NO₂, it should be much easier for a radical to remove a hydrogen atom if it impinges at right angles to the skeleton plane, than if it strikes within that plane.* Both activation energy and pre-exponential factors should therefore be affected. What will happen in a unimolecular dissociation is harder to imagine, but it would be surprising if the fact that a CH bond may more easily be broken in one direction than in others does not play some part.

Stabilization Energy. The correlation plot of Figure 4 offers an improved means of measuring this quantity, as the difference between the D°_{298} value predicted

^{*}In addition to the predicted difference in D_{298}° of 5 kcal mol⁻¹ (Section 3B), stabilization energy should further lower the activation energy for the approach at right angles. ¹⁷ V. H. Dibeler and S. K. Liston, J. Chem. Phys., 1968, **48**, 4765.

from the ν (CH)^{is} and the experimental one. One such application throws light on an old controversy, whether the weakness of a tertiary CH bond is due to a large stabilization energy of the t-butyl radical. The data in Table 1 indicate that the latter cannot exceed 2—3 kcal mol⁻¹. The tertiary CH bond is weak in the *equilibrium* state.

By contrast, halogenated methanes, other than fluorides, appear to involve significant amounts of stabilization energy. This may help to explain why the attack of chlorine atoms on ethyl chloride occurs almost wholly on the CH₂ group,¹⁸ where the bonds have a D°_{298} of 102.5 kcal mol⁻¹, in contrast to the weaker bond in the CH₃ group which has a D°_{298} value of only 99.2 kcal mol⁻¹.^{19*}

We note finally that the stabilization energy of 8 kcal mol⁻¹ for the cyclo-C₃H₅ radical indicated by the present results seems rather high, and possibly the existing experimental value of D°_{298} is in error.²¹⁻²⁵

C. ν (CH)^{is} Values and Force Constant Calculations.—It must be stated categorically that ν (CH)^{is} values should be the sole sources of *individual* bond stretching force constants, unless there is greater error in them, due to Fermi resonances in the partially deuteriated species, than there is in the normal, undeuteriated ones. The latter should normally be used only to determine stretching interaction force constants and/or Fermi resonance shifts.²,²⁶ This approach has been very seldom adopted, except in the treatment of vibrations of CH₃ or CH₂ groups which consider only CH or CD stretching (*e.g.* refs. 1, 2, and 12). It is of course easy to calculate *f*(CH) in the diatomic approximation.[†] Such constants should normally be higher than those from a complete treatment by about 0.03 mdyn Å⁻¹.[‡]

In one comprehensive treatment of CH stretching frequencies, $^{28} \nu$ (CH)^{is} values

- $\ln H_2CO$, however, owing probably to the abnormally high CH/CO stretch-stretch interaction,²⁷ $f(CH)^{diat.} < f(CH)(g.f.f.)$.
- ¹⁸ D. C. McKean and B. W. Laurie, J. Mol. Structure, 1975, 27, 317; see also F. F. Rust and W. E. Vaughan, J. Org. Chem., 1941, 6, 479.
- ¹⁹ D. C. McKean, O. Saur, J. Travert, and J. C. Lavalley, Spectrochim. Acta, 1975, 31A, 1713.
- ²⁰ H. Singh and J. M. Tedder, J. Chem. Soc (B), 1966, 612.
- ²¹ R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 1971, 54, 724.
- ²² (a) C. E. Blom, P. J. Slingerland, and C. Altona, *Mol. Phys.*, 1976, **31**, 1359; (b) C. E. Blom, L. P. Otto, and C. Altona, *Mol. Phys.*, 1976, **32**, 1137.
- ²³ J. L. Duncan, personal communication.
- ²⁴ D. C. McKean, unpublished work.
- ²⁵ R. Walsh, Trans. Faraday Soc., 1971, 67, 2085.
- ²⁸ (a) D. C. McKean, J. C. Lavalley, O. Saur, and J. Travert, Spectrochim. Acta, 1977, 33A, 865; (b) D. C. McKean, J. C. Lavalley, O. Saur, H. G. M. Edwards, and V. Fawcett, Spectrochim, Acta, 1977, 33A, 913.
- ²⁷ J. L. Duncan and P. D. Mallinson, Chem. Phys. Letters, 1973, 23, 597.
- ²⁸ (a) H. Perrin, A. Cossée-Barbi, N. Brigot, and S. Odiot, *Mol. Phys.*, 1975, 29, 1261; (b)
 H. Perrin, J. Mol. Structure, 1975, 28, 305; (c) A. Cossée-Barbi and H. Perrin. J. Mol. Structure, 1976, 30, 69.

^{*}That the CH dissociation energy can be important in hydrogen abstraction reactions is suggested by the preferential attack of Cl on the CH₂ α to O in ethers,²⁰ which is easily understood on the basis of the lone pair *trans* effect (see Section 3A). $f(CH)^{diat.} = [\nu(CH)^{is}/1302.83]^2/1.0756$. Normally variations in $f(CH)^{diat.}$ larger than 0.015

 $f(CH)^{drat.} = [\nu(CH)^{ls}/1302.83]^2/1.0756$. Normally variations in $f(CH)^{drat.}$ larger than 0.015 mdynÅ⁻¹ should be significant.

have been used in several cases and differences here from 'diatomic' f(CH) values of the order of 0.07 mdyn Å⁻¹ found. It is not clear however in this work, what assumptions were made concerning CH stretching interaction constants. These are in general very hard to determine.

The same work is notable for a CNDO treatment of CH stretching force constants. While CNDO calculations alone do not produce meaningful values of force constants, or of bond lengths, they can be made to predict variations in f(CH) on a semi-empirical basis with a substantial degree of success, although CH bonds affected by lone pair *trans* effects require a different approach to those in hydrocarbons.

3 Effects of Conformation and Substitution

These will be considered in seven groups:

- A. the *trans* effect of lone pairs of electrons;
- **B.** the systems H C = O and H C = N;
- C. α -substitution effects of Me, halogens, CF₃, and CCl₃ in saturated compounds;
- D. β -substitution effects of Me and halogens in saturated compounds;
- E. substituent effects on olefinic CH bonds;
- F. methyl groups adjacent to multiple bonds: hyperconjugation;
- G. methyl groups attached to planar XY₂ skeletons.

Where substitution of a group X for hydrogen may be studied, one can define a substituent effect S^{X} as the difference in ν (CH)^{is} caused by that substitution. The evidence below suggests that it is rarely profitable to do this, in view of the non-additivity of such parameters.

A. The *trans* effect of lone pairs.—The presence of two types of CH bond in CH₃O or CH₂O compounds was first recognized by Freymann²⁹ in studies of the overtone region of ν (CH). The specific role of the lone pair was identified through the disappearance of the weak CH bond frequencies when the lone pairs were involved in complex formation.*

Rather better known is the post-war work which characterized CH₃O and CH₃N groups by their low-lying bands near 2800 cm⁻¹, which reflect the presence of weak CH bonds.^{31†} Bohlmann first recognized that a lone pair weakens a CH

^{*}It is interesting to observe that these earlier conclusions have been recently vindicated by contemporary work in the overtone region, which has resulted in the 'local mode' description of CH stretching in CH_2 or CH_3 groups.³⁰

[†]The suggestions in these papers that the 2800 cm⁻¹ bands are due to 'symmetric' CH₃ stretching fundamentals are now seen to be erroneous. The more appropriate is the word 'fundamental', the less appropriate is the word 'symmetric'. This conclusion follows from quantitative descriptions based on the CHD₂ data.³⁵

²⁹ R. Freymann and J. Gueron, *Compt. rend.*, 1937, **205**, 859; M. et R. Freymann, *Compt. rend.*, 1944, **219**, 515.

³⁰ B. R. Henry, Accounts. Chem. Res., 1977, 10, 207.

³¹ H. B. Henbest, G. D. Meakins, B. Nicholls, and A. A. Wagland, *J. Chem. Soc.*, 1957, 1462; J. T. Braunholtz, E. A. V. Ebsworth, F. G. Mann, and N. Sheppard, *J. Chem. Soc.*, 1958, 2780; R. D. Hill and G. D. Meakins, *J. Chem. Soc.*, 1958, 760.

bond in the *trans* position, in studies of quinolizidine alkaloids.³² Much work has since been done, both in n.m.r.³³ and in the i.r., in the latter notably by Krueger and co-workers.³⁴ However, ν (CH)^{is} data were not obtained, so that a quantitative treatment of the bond strength was not possible.*

The first ν (CH)^{is} values were reported by the author in the simplest CH₃N and CH₃O compounds in 1971.^{4,35} Table 2 shows ν (CH)^{is} data for these and some CH₃P and CH₃S compounds.^{36,37} It is convenient to identify each CH bond by the group X lying *trans* to it, thus, ν (CH)^X. It is seen that ν (CH)^{Ip} is considerably lower than ν (CH)^H or ν (CH)^{Me} in the N and O compounds, its lowness increasing with the number of methyl groups, and decreasing with the number of lone pairs.[†] Where there are two of the latter, as in CH₃O species, there are *two* CH bonds *trans* to lone pairs, if these are visualized as in a Nyholm–Gillespie model, and accordingly two weak CH bonds are found. Extension of this idea to CH₃F leads us to expect three weak CH bonds here, and indeed the CH bond in this molecule is anomalously weak compared with CH₄ or CH₃Cl.⁴ Although CH₃P and CH₃S compounds are also electron donors, the larger size of the P or S atom and their differing valence angles lead one to anticipate smaller *trans* effects. Such effects are indeed found to be small, zero, or even reversed,³⁷ as the data in Table 2 show.

Mechanism of the Lone Pair trans Effect. Insofar as ab initio calculations reproduce the bond strength variations very well, it may be said that the computer knows the physical cause of this effect, the difficulty lying in translating information concerning MO eigen-functions and values into intuitive pictures. Two prominent features of the population analyses are the higher charge densities found on the *trans* hydrogens, and much larger off-diagonal antibonding terms between these same hydrogens and the nitrogen, than for hydrogens gauche to the lone pair.

These results are in keeping with the n.m.r. evidence that the *trans* hydrogen is more screened than the *gauche* one and with the suggestion of Hamlow *et al.*³³ that the lone pair is partly delocalized into an antibonding σ orbital in the *trans* CH bond. In VB terms this would be equivalent to a repulsion between the CH bonding pair and the lone pair of electrons. A similar explanation, in terms of a Nyholm–Gillespie picture, has been given for the *tilt* of the methyl group, away

^{*}*e.g.* derivatives such as $(CH_3)_2CDNH_2$ were studied and low $\nu(CD)$ bands found where CD was *trans* to the lone pair. CD stretching modes however are not good characteristic group frequencies, and in addition are often subject to Fermi resonances. See also ref. 42.

[†]We note an ambiguity in defining a lone pair *trans* effect. It could refer to the absolute weakness of $\nu(CH)^{1p}$, or to the difference between $\nu(CH)^{1p}$ and $\nu(CH)^{H}$ and/or $\nu(CH)^{Me}$. The distinction is clearly unimportant in CH₃N and CH₃O compounds.

³² F. Bohlmann, Chem. Ber., 1958, 91, 2157.

³³ H. P. Hamlow, S. Okuda, and N. Nakagawa, Tetrahedron Letters, 1964, 2553.

³⁴ e.g. P. J. Krueger, J. Jan, and W. Wieser, J. Mol. Structure, 1970, 5, 375; P. J. Krueger and J. Jan, Canad. J. Chem., 1970, 48, 3229, 3236.

³⁵ D. C. McKean and I. A. Ellis, J. Mol. Structure, 1975, 29, 81.

³⁶ J. Travert, O. Saur, A. Janin, and J. C. Lavalley, J. Mol. Structure, 1976, 33, 265.

³⁷ D. C. McKean and G. P. McQuillan, submitted for publication in J. Mol. Structure.

	ν(CH) ^{Me} /cm ⁻¹	ν (CH) ^H /cm ⁻¹	$\nu(CH)^{lp}/cm^{-l}$	$\Delta r_{ m o}$ (pred.) ^a /Å	$\Delta r_{ m e}(ab.in.)^{a}/{ m \AA}$	${\cal \Delta} D^{\circ}{}^{298}{}^{b/}$ kcal mol $^{-1}$
$H_3 N H_2^c$		2955	2880	0.008	<i>p</i> 600.0	6.5
CH ₃) ₂ NH ^c	2962	2937	2834	0.013, 0.011	$0.010, 0.009^{e}$	11.0, 8.9
$(H_3)_3 N^c$	2952		2799	0.016	0.015/	13.2
H3OH9		2979	2920	0.006	0.006h	5.1
$CH_3)_2O^g$	2984		2884	0.010(5)	0.008^{h}	8.6
$H_3PH_2^i$		2964	2979	-0.001(5)		1.3
$CH_3)_2PH^i$	2962	2952	2949	0.001(5),0		1.1
$(CH_3)_3P^i$	2954		2919	0.003(5)		3.1
(H ₃ SH)		2985	2982	0~		0~
$(H_3)_2S^i$	2979		2947	0.003(5)		2.8
$\Delta r - r_{CH} \ln p - H_3 OPC I_2, CH_3^{-1}$ H ₃ OPC I ₂ , CH ₃ ⁻¹ P. Pulay and F (<i>a</i>) S. Skaarup Soc., 1977, 99,	$r_{\text{CH}}^{\text{went}}$, $b_{\Delta}^{\text{o}} D^{\text{o}} = D^{\text{o}}$ COOCH ₃ and HCOOC COICH ₃ and HCOOC Torok, <i>J. Mol. Struc</i> T. L. Griffin, and J. 5570.	н мелн—D°снір; ^с ref. На, аre quoted in ref <i>ture</i> , 1975, 29 , 239. E. Boggs, <i>J. Amer. C</i>	35; ^d ref. 38; ^e ref. 7, p. 1049. <i>hem. Soc.</i> , 1976, 98,	39; [/] ref. 37; ^g ref. 4; 3140; (<i>b</i>) E. Flood, F	^h ref. 22 <i>b</i> ; ⁱ ref. 37; ^j r. ² . Pulay, and J. E. Bo	ef. 36; ν(CH) ¹⁸ data for igss, J. Amer. Chem.

Table 2 $\nu(CH)^{is}$ and lone-pair trans effects

from the CN direction, in $(CH_3)_2NH^{39}$ The author has suggested³⁵ that since a non-bonding repulsion is a mutual effect, the decrease in ionization potential of the lone pair in the series MeNH₂, Me₂NH, Me₃N may be due to the cumulative effect of repulsions from the *trans* CH bonds in each methyl group. However it is then difficult to see why the ν (CH)^{1p} value falls with increasing methyl substitution unless (i) there is a direct ' γ ' repulsion effect between the methyl groups, as suggested by Bellamy and Mayo,^{40*} or (ii) the character of the lone pair orbital is altered by replacement of the σ_{NH} bond by the σ_{NC} bond. The latter could then alone be responsible for the change in ionization potential. However it would seem prudent to include a 'back' *trans* effect as contributing to the changes in IP observed.

Wider Implications of the trans Effect. These have been well reviewed by Bellamy and Mayo.⁴¹⁺ trans Effects of lone pairs should be, and can be found, affecting not only CH but NH and OH bonds. There seems no reason also why they should not likewise affect C—C or C—X bonds generally, and indications may be found that this is so.⁴¹ If however C—C bonds are less affected than C—H, then the trans effect will have a significant role to play in determining the relative stabilities of the conformers of pyridine-type molecules. The effect will then tend to favour conformers in which the lone pair is trans to C—C (NH axial), contrary to the preferred conformation in which NH is equatorial.⁴²

Lone pair *trans* effects should also occur across C -O and C = N bonds (see Section 3B) and various authors^{29,41,43} have suggested that the well-known weakness of the aldehydic bond arises from this cause.

The lone pair *trans* effect is also a useful *tool* in conformational problems, *e.g.* the studies of dioxalane, dioxane, and other —CHRO— systems by Lavalley and co-workers;^{44,45} also, of pyridines.⁴² Another example, of different type, involves the disappearance of the effect when the lone pair is removed from the nitrogen *internally*, as for instance when CH₃ is replaced by SiH₃ or SiF₃.³⁵ The low i.r. band at 2865 cm⁻¹ (gas), (2845 cm⁻¹, liquid) in B[N(CHD₂)₂]₃ suggests that the BNC₂ group is pyramidal, whereas the corresponding band at 2924 cm⁻¹ (gas) in Cl₂BN(CHD₂)₂ is in keeping with a planar skeleton.⁴⁶

B. HC—O and HC—N Systems.—For many CH—O systems, the observed ν (CH) values of the normal species, which are well known, are sufficiently low to be regarded as ν (CH)^{is}, although Fermi resonances with 2δ (CH) may remain. Table 3 lists the most reliable of these, to illustrate several notable features. Firstly, the α effect of methyl is a depression of about 43 cm⁻¹, as found in

*See Section 3D. However the 4-31 G calculation for $(CH_3)_3N$ shows positive overlap between each of the H^{1p} atoms.²¹

*A possible application in the chlorination of ethers²⁰ was noted earlier (Section 3B).

- ⁴⁰ L. Bellamy and D. W. Mayo, to be published.
- ⁴¹ L. J. Bellamy and D. W. Mayo, J. Phys. Chem., 1976, 80, 1217.
- ⁴² I. D. Blackburne, A. R. Katritzky, and Y. Takeuchi, Accounts. Chem. Res., 1975, 8, 300.
- ⁴³ D. C. McKean, Spectrochim. Acta, 1975, 31A, 1167.
- ⁴⁴ O. Saur, A. Janin, J. C. Lavalley, and N. Sheppard, Compt. rend., 1973, 276, B, 725.
- ⁴⁵ O. Saur, A. Janin, A. Vallet, and J. C. Lavalley, J. Mol. Structure, 1976, 34, 171.
- ⁴⁶ Data from H. J. Becher, personal communication.

Table 3 ν (CH)	^{is} in some	H-C=O and H-	-C = N s	ystems	
	$\nu(CH)^{is}$		v(CH) ^{is}		$\nu(CH)^{is}$
НСНО	2813a	FCHO	2981 <i>°</i>	СНОСНО	2850 ^b
CH3CHO	2770 ^a	НОСНО	2943a	HSCHO t, c	2843, 2845°
CH ₃ CHO,BF ₃	2940 ^b	CH ₃ OCHO	2930a	НС≡ССНО	2858ª
P hCHO	2770 ^a	CH2=CHCHO	2800 ^b	CCl ₃ CHO	2856 ^d
PhCHO,BF ₃	2930 ^b	NH ₂ CHO	2852 ^a	CBr ₃ CHO	2845 ^d
HCOO-	(2816) ^b				
CH ₃ CH=NC	H ₃				
	2839 ^e	CH ₂ ==NH	3018 ^f		
			2936 ^f		
arof 7. brof 280	. Crof 17.	draf 19, efrom the	nanias CD	CU-NCD 124	and also and for

aref. 7; bref. 28c; cref. 47; dref. 48; from the species $CD_3CH = NCD_3$;²⁴ see also ref. 50; Iref. 49. Whether these frequencies are truly $\nu(CH)^{is}$, seems doubtful.

alkanes (see below). Secondly, certain substituents, *viz*. F, HO, CH₃O, produce very large increases in ν (CH), in the range of 120—170 cm⁻¹. Thirdly, complexing with BF₃ also produces large upward frequency shifts. A fourth observation of considerable interest is that ν (CH)¹⁸ in HCOSH is almost identical in its *cis* and *trans* isomers, this apparently indicating the absence of any effect on ν (CH) of H–H interaction in this molecule.⁴⁷ The success of semiempirical CNDO calculations has already been mentioned;²⁸ the physical reasons for the variations however remain obscure. *Ab initio* calculations on H₂CO and CH₃CHO show clearly an unusually high negative charge on the aldehyde hydrogen, and similarly high negative overlap populations between the latter and the oxygen. The weakening effect of the methyl group appears to arise from greater H_{ald} ··· O and H_{ald} ··· C_{Me} antibonding (the latter compared with H_{ald} ··· H_{ald} in H₂CO) in CH₃CHO, the overlap between H_{ald} and all three methyl hydrogens being positive.²⁴

In CH=N systems, Bellamy and Mayo⁴¹ found good evidence for low ν (CH) values associated with the expected lone pair *trans* effect in a number of cases, *e.g.* CH₂=NOH. However the only secure value of ν (CH)^{is} known so far is that for MeCH=NMe (2839 cm⁻¹), which exists only in the conformer in which the CH bond is *trans* to the lone pair.

C. a Effects of Methyl, Halogens, CCl₃, and CF₃, in Saturated Compounds.— These are shown in Table 4. The α effect of methyl is always a depression of ν (CH)^{is}, by an amount varying from 42 to 19 cm⁻¹. It diminishes with an increase in the number of methyl groups, as seen in the series CH₄, MeCH₃, Me₂CH₂, and Me₃CH, and it is reduced by the successive addition of chlorine atoms.

The α effect of Cl has been most studied.^{18,19} This is a rise in frequency which

⁴⁷ W. H. Hocking and G. Winnewisser, Z. Naturforsch., 1976, 31a, 422, 438, 995.

⁴⁸ G. Lucazeau and A. Novak, Spectrochim. Acta, 1969, 25A, 1615.

⁴⁹ C. B. Moore, G. C. Pimentel, and T. D. Goldfarb, J. Chem. Phys., 1965, 43, 63.

⁵⁰ H. Hollenstein and Hs. H. Günthard, Chem. Phys., 1974, 4, 368.

Table 4 Some a	e-substitution	effects on v(CI	H) ¹⁵ in saturated	compounds				
	ν (CH) ^{is}	S_{α}^{F}		$\nu(CH)^{is}$	$S_{\mathbf{x}}^{\mathrm{F}}$		$\nu(CH)^{is}$	S.F
CH₄	2992		$MeCH_3$	2950		Me_2CH_2	2920	
CH ₃ F	2976	-16	$MeCH_2F$	2950	0	Me ₂ CHF	2931	11
CH_2F_2	2984	×						
CHF ₃	2990α	6a						
		S_{a}^{cl}			S_{α}^{cl}			S _a ci
CH ₃ CI	3012	20	Me <i>CH</i> ₂ Cl	2983	33	Me ₂ CHCI	2962	42
CH ₂ Cl ₂	3025	13	Me <i>CH</i> Cl ₂	3006	23			
CHC1 ₃	3034	6						
		S_{π}^{Br}			S_{r}^{Br}			S_{α}^{Br} Br
CH ₃ Br	3027	35	Me <i>CH</i> ₂ Br	2996	- 46	Me ₂ CHBr	2975	55
CH_2Br_2	3040	13						
CHBr ₃	3050	10						
		S ₁			S ₁			S _n 1
CH ₃ I	3029	"37	$MeCH_2I$	2998	48	Me_2CHI	2974	_54
CH_2I_2	3037	8						
CHI ₃	3026	- 11						
		$S_{a}^{ m CF_{3}}$			$S_{a}^{ccl_{3}}$			S_{z}^{CN}
CH ₃ CF ₃ ^b	3010	18	CH ₃ CCl ₃	2988	4	CH ³ CN	2985	-7
$CH_2(CF_3)_2^b$	3008	-2	CH2CICCI3	3000	- 12	$CH_2(CN)_2$	2963	- 22
CH(CF ₃)3 ^b	2992	-16	CHCl ₂ CCl ₃	3002	- 23			
S_{a}^{X} values are the	increments in	$\nu(CH)^{is}$ due to	successive a subsit	ution of X for	H; Sa ^{Me} can l	be obtained from	horizontal dif	ferences in v(CH) ^{ia} .
Data from refs. 7	, 18, and 19 exc	sept where other	wise indicated.		•			
^a Considerable un	certainty due to	Fermi resonance	ce, ref. 51; °H. Bur	ger, personal (communication.			

413

is progressively smaller the more chlorines that are added. The α effect of Cl, however, is enhanced by methyl substitution. It seems as though the initial depression by α methyl makes possible a higher subsequent elevation by chlorine, in contrast to the effect noted above of the effect of chlorine on α methyl substitution. It is also in contrast to the effect of CCl₃ which greatly reduces the effect of α Cl.

The effects of α bromine and α iodine are elevations which initially are greater than those of chlorine, but which thereafter are similar, or as in the case of CHI₃, reversed. Fluorine behaves anomalously amongst the halogens in that the first fluorine gives a marked depression, attributed to a lone pair affect,⁴ whereas the second and third give only small increases.*

The variations in these α effects on CH bonds are in contrast to the α effects found in SiH bonds. In the latter, S_{α}^{Me} is essentially constant, at about -20 cm^{-1} , while S_{α}^{F} and S_{α}^{Cl} appear to increase marginally with successive addition of halogen, S_{α}^{F} being positive from the beginning.¹⁸

The α effect of a CX₃ group can also be considered as the β effects of the CX bonds concerned and it is in this context that models for the mechanism of the α effect have been discussed (see Section 3D).

D. β Effects of Methyl and Halogens, in Saturated Compounds.—A group placed in a β position may in general produce different effects depending on whether the CH bond affected is *trans* or *gauche* to the substituent. It is not easy to decide how best to describe the effects found. In some cases the simplest method is to quote ν (CH)^{is} values classified according to the group lying in the *trans* position, as in Table 5 which summarizes the data for all the ethyl, isopropyl, and t-butyl halides. Three main features are seen. The value for ν (CH)^{is} for a CH bond *trans* to halogen falls in the sequence F > Cl > Br > I, the extent of the fall increasing with the addition of methyl groups. The starting point of each series, however, differs, thus $S_t^{\rm F}$ takes the values +7 (EtF), +22 (i-PrF), +36 (t-BuF). Again, S_t^{Cl} starts negative (-5, EtCl) and then becomes positive (+5 in i-PrCl, +12 in t-BuCl). The second feature is the constancy of the ν (CH)^{is} values *trans* to CH₃ or H as the halogen is varied. Since these are all *gauche* to halogen, this could be described as a constant gauche effect of halogen, which is a consistent rise of 20-24 cm⁻¹ compared with the corresponding hydrogen compound. The third feature is that the bonds trans to CH₃ are consistently 14-19 cm⁻¹ stronger than those trans to H, in the same molecule. A larger difference (25 cm^{-1}) is found in CH₃NHMe. This could be termed a gauche effect of methyl, providing it is realised that this difference is in fact $S_{\ell}^{Me} - S_{q}^{Me}$ in terms of the definition of S. The value of $S_t^{Me} - S_g^{Me}$ is more constant than is that of S_t^{Me} alone. Thus S_t^{Me} from a comparison of propane with ethane is 0, but from the pair Me₂CH₂/ Me₃CH it is +7 cm⁻¹, and from Me₄C/Me₃CH, +10 cm⁻¹. S_g^{Me} is more constant: -14 cm⁻¹ from the pair CH₃CH₂Me/CH₃CH₃, -12 cm⁻¹ from CH₃-CHMe₂/CH₃CH₂Me and -13 cm⁻¹ from CH₃NHMe/CH₃NH₂.

^{*}The value of ν (CH)^{is} for CHF₃ is uncertain due to a strong Fermi resonance.⁵¹ ⁵¹ C. C. Costain, J. Mol. Spectroscopy, 1962, 9, 317.

CH ₃	Н	х
	2 9 50	
	297 3	2 9 57
	29 72	2 9 45
	29 71	29 36
	296 9	29 28
29 50	29 36	
2 9 74	29 58	2958
29 76	2959	2 9 41
2 9 76	2 9 58	2929
2 97 3	29 55	29 18
2 94 3	2924	
2 9 67		29 60
29 68		29 36
29 71		292 5
29 68		2909
	2984	297 1
		29 88
299 3		296 6
	CH ₃ 2950 2974 2976 2976 2973 2943 2967 2968 2971 2968 2971 2968	CH ₃ H 2950 2973 2972 2971 2969 2950 2936 2974 2958 2976 2959 2976 2958 2976 2958 2973 2955 2943 2924 2967 2968 2971 2968 2971 2968 2984

Table 5 β -substitution effects of Me and halogen on ν (CH)^{is} in saturated compounds^a groups lying trans

^aThe ν (CH)^{ig} values listed are for CH bonds in the methyl group *in italics*, data from ref. 18 and 19; β effects of methyl in CH₃—N, P, O, and S compounds can be seen in Table 2.

The reliability of the value of $S_t^{Me} - S_g^{Me}$ leads to the prediction that in cyclohexanes, the equatorial CH bond will be stronger than the axial one, by 2–5 kcal mol⁻¹, since the former is *trans* to two C–C bonds, the latter *trans* to two CH ones.*

A tabulation of S_g and S_t effects for both methyl and chlorine for chloroalkanes is included in ref. 18, mainly to draw attention to the high degree of nonadditivity they exhibit. A general conclusion for S^{C1} values is that both S_{α}^{C1} and S_{β}^{C1} effects diminish with increasing numbers of chlorine atoms.

It is plain that the *trans* and *gauche* effects of halogen cannot be easily related to the normal pattern of inductive effects.

Chemical models for β -substitution effects. Two models have been suggested, both based on the premise of repulsions between the terminal atoms, or bonding pairs of electrons involved, in the β bonds. The Reporter, starting from the above VB description of the lone pair *trans* effect, has speculated that such repulsions also occur between two bonding pairs of electrons, similarly related. In this way, the decreasing strength of the CH bond with α methyl substitution in the series CH₄, CH₃Me, CH₂Me₂, CHMe₃ is attributed to the increasing number of repulsions involving the *trans* CH bonds in each methyl group.¹² The varying *trans* effect of

^{*}This has now been confirmed⁵⁵ (J. Caillod, O. Saur and J. C. Lavalley, to be published). The difference in strength is 31 cm⁻¹ \equiv 2.7 kcal mol⁻¹; see also ref. 45.

halogen in the alkyl halides is then attributed to a progressive 'loss of control' by the halogen of the CX bonding electrons, in the order F > Cl > Br > I, with a resultant increase in the repulsion between this pair and the pair in the *trans* CH bond.^{43*}

Bellamy and Mayo,⁴⁰ by contrast, suppose *gauche* $H \cdots H$ (or bonding pair) repulsions to dominate both CH bond strength, and also CH₃ HCH angles, *gauche* $H \cdots X$ repulsions being held to be insignificant. The fall in ν (CH)^{is} of 42 cm⁻¹ from CH₄ to CH₃Me is then due to the *gauche* effect of two hydrogens. This then leads to an explanation of the constant *gauche* effect of halogen of about +20 cm⁻¹, since a CH bond *gauche* to halogen in CH₃CH₂X is now *gauche* to only one CH bond, and the repulsion from the *gauche* CX is considered insignificant in all cases. The ν (CH)^{is} consequently rises one half of the way back to the value in CH₄. If two or three β halogens are present, the CH bond may be *gauche* only to two halogens and a ν (CH)^{is} value close to that in CH₄ is then expected, and indeed found.

The varying *trans* effect of halogen is attributed in this work⁴⁰ to changes in HCX angles, with changes of halogen. Bellamy and Mayo extend their invocation of repulsions between hydrogen atoms to explain the *gauche* effect (or rather, $(S_t^{Me} - S_q^{Me})$ of methyl described above. Here the repulsions invoked involve CH bonds γ to each other. Slight support for part of the Bellamy-Mayo model comes from studies of β CH—CH stretch-stretch interaction force constants.²⁶ The constant involving gauche bonds is positive, as expected for a repulsion between the hydrogens. By contrast, the constant for trans bonds is negative, in agreement with population analyses from *ab initio* calculations²⁴ which show positive (bonding) terms between *trans* hydrogens, but negative (antibonding) ones between gauche ones. These overlap populations are of course connected with the *ab initio* force constants, which for ethane have the same signs and fairly similar magnitudes to those found by experiment.^{26b} However, the overlap populations for γ hydrogens in close proximity, are positive,²⁴ as noted also by Cremer et al.52 in connection with barriers to restricted rotation, so that no support is given to the Bellamy-Mayo explanation of the gauche effect of methyl.

A further consideration is that these β or γ overlap populations are all smaller by a power of ten than the α ones, acting between the H and X atoms in the system H—C—X, which are always negative. Moreover the correlation between CH bond strengths and HCH angle works equally well for CH₃X compounds in which X is halogen, CN, C = CH, NO₂, BF₂, BCl₂, Ph, as it does for CH₃Me.¹⁴ These represent a wide range of ν (CH)^{is} values in situations where no β CH bonds are present. The implications seem to be that it is the nature of the X group and the CX bond which determine the HCH angle and perhaps also the CH bond strength.

Exploration of the substitution effects of halogen by ab initio calculations is

^{*}Supposing the carbon 2ρ character to be responsible for the repulsion,^{39b} this may be expected to increase in the series F, Cl, Br, or I.

⁵² D. Cremer, J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Amer. Chem. Soc., 1974, 96, 6900.

restricted to fluorine and chlorine compounds.²⁴ The results have been disappointing. The 4–31G basis set describes very poorly both the α effect of F or Cl, and the combined α effects of halogen and methyl. The β effects of halogen are somewhat better reproduced, the constant *gauche* effect exactly so. The difference in r_e for CH^x between fluorine and chlorine is somewhat greater [0.003(4) Å] than the ν (CH)^{is} data imply (0.001(2) Å).

E. Substitution Effects on Olefinic CH Bonds.— ν (CH)^{is} data are available for the effects of methyl groups¹ and halogen atoms⁴³ on CH bonds in positions *cis*, *trans*, and α to the substituent, although the data are less accurate than those for saturated compounds since partial deuteriation does not in general remove resonances in the CH stretching region arising from ν (C=C) and δ (=CH) levels. The reference compound, ethene, has a current ν (CH)^{is} value of 3055 cm⁻¹.²³

Table 6 Substituent effects on olefinic CH bonds^{α,b} ν (CH)^{is}

		Hc	Ht	Η _α	S_{c}^{X}	$S_t^{\mathbf{X}}$	$S_{\alpha}{}^{\rm X}$
CH ₂ =	CHMe ^c	3039	3064	3013	-16	9	-42
CH_2	CHCld	3074	3072	3082	19	17	27
CH_2^-	CHBr ^d	3074	3057	3085	19	2	30
^a referei	nce compound C_2	H ₄ , 3055 cm	1 ⁻¹ ; ²³ ^b for	other halo	genated et l	nylenes, so	ee ref. 43; ^c ref.

Table 6 shows experimental ν (CH)^{is} values for propene, vinyl chloride, and bromide, and the *S* values obtained from them. S_{α} for methyl is -42 cm^{-1} , identical with its value in ethane.* The *trans* and *cis* effects of methyl are positive and negative, respectively, rather like the *trans* and *gauche* ones in saturated compounds. It is interesting to note that they predict, rather well, the observed frequency of 3050 cm⁻¹ in but-1-ene [$S_c^{\text{Me}} + S_t^{\text{Me}} = -7$, ν (CH)^{is} (pred.) = 3048 cm⁻¹].

The α and *cis* effects of chlorine and bromine are also like the α and *gauche* effects in saturated compounds. The *trans* effects are however both positive. in contrast to the alkyl halides, although, as in the latter, $S_t^{Cl} > S_t^{Br}$.

Since no ν (CH)^{is} data are available as yet for vinyl fluoride and iodide, the CH stretching frequencies of di- and tri-halogenated ethylenes have been examined for indirect evidence of substituent effects.⁴³ It seems very probable that the sequence $S_t^F > S_t^{C1} > S_t^{Br} > S_t^I$ is even more marked in ethylenes than it is in alkyl halides; also that fluorine markedly strengthens CH bonds in the α , *cis*, and *trans* positions. The *cis* effect in an ethylene would of course be expected to resemble an *ortho* effect in an aromatic compound. Bellamy and Mayo⁴⁰ quote ν (CH) data for benzenes which suggest a strong similarity with the ethylenes: *e.g.* for 1:3:5 benzene-X₃, X = D, 3053 cm⁻¹; F, 3108; Cl, 3089; Br, 3090; Me, 3020

^{*}With reference to the Bellamy-Mayo model for S_a^{Me} , the gauche H—H distance in propene is 0.035 Å greater than that in ethane.

cm⁻¹. In these compounds the ν (CH) modes are essentially isolated; however, each CH bond is subject to one *para* and two *ortho* effects of X. The similarity to *S*_{cis} effects therefore suggests that *S*_{para} is either negligible, or similar to *S*_{ortho}.

The success of *ab initio* calculations of r_e in predicting the effect of methyl on ==CH in propene can be seen in Table 1. However these calculations exhibit one curious feature; if the remaining geometrical parameters are constrained to their spectroscopic values, no differences in $r_e(CH)$ emerge. Only when the C==C bond in particular is allowed to refine to an optimum 0.02 Å less than the r_s value, do the expected differences appear.

Preliminary calculations on the vinyl halides do not merit space here.

F. Methyl Groups Adjacent to Multiple Bonds: Hyperconjugation.—The data available so far are shown in Table 7, where H_s and H_a refer to atoms in and out of the skeletal plane respectively. In these four C=X compounds, CH_a is always weaker than CH_s. This might be attributable to hyperconjugation, since the latter, as normally conceived, involves a movement of charge out of an MO involving the H_a hydrogen into the rest of the molecule. Mulliken⁵³ has estimated that this should weaken the CH_a bonds by about 0.001 Å, corresponding to about 10 cm⁻¹ in ν (CH_a)^{is}. The H_s—H_a difference, however, is considerably more than this, especially in the C=O compounds. Ab initio calculations suggest that part of this may arise in a different manner. On the one hand, the net atomic population on H_a in propene is appreciably greater than that on H_s^{24} although the gross populations are similar. On the other, the dipole moment in propene is said to arise largely from a polarization of the π bond away from the methyl group.⁵⁴ Together these findings suggest that the main effect in propene is a non-bonding electron pair repulsion between the π electrons and the CH_a bonding pairs. In acetaldehyde, both the net and gross populations are larger on Ha than on Hs, although hyperconjugation would have been expected to be greater than in propene. The tentative conclusion is that hyperconjugation, if it exists, is masked by other, stronger, influences. Loss of charge from the CH_s atom seems to be correlated with a *rise* in CH bond strength.

Where a methyl group is attached to a triple bond, all these CH bonds will be involved in either loss of charge, due to hyperconjugation, or in repulsion involving the π bonds. It is therefore interesting to observe that the CH bond is markedly stronger in CH₃CN than it is in CH₃C \equiv CH. The 4–31G basis set can reproduce the difference in bond length (Table 8) but only provided all the bonds are allowed to vary in length. Both net and gross populations on the hydrogens are larger in the acetylene. As would be expected intuitively, the CH bond is slightly weaker in CH₃–C \equiv C–CH₃ than in CH₃–C \equiv CH.

Returning briefly to the C=X compounds, we note that the β effects of the second methyl group on the *trans* and *gauche* CH bonds of the first one, are

⁵³ R. S. Mulliken, C. A. Rieke, and W. G. Brown, J. Amer. Chem. Soc., 1941, 63, 41.

⁵⁴ L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Amer. Chem. Soc., 1971, 93, 5339.

Table $/ \nu$ (CH) as νa A. double bonds	iues for methyl gro	oups adjacent to m	ultiple bonds			
	$\nu(CH)^{is}/cm^{-1}$	r _o (pred.)/Å	r _e (4—31G)/Å	<i>п.а.р.</i> "/е	g.a.p.ª/c	D° ₂₉₈ (<i>pred.</i>)/ kcal mol⁻¹
CH ₃ CH CH ₂						
Hs	29596	1.095(5)	1.082 ^c	0.540	0.838	100.4
H_{a}	2931^{b}	1.098(5)	1.085¢	0.555	0.836	98.0
$H_{\rm s}-H_{\rm a}$	28	-0.003	-0.003	-0.015	+0.002	2.4
(CH ₃) ₂ C=CH ₂						
Hs	2965^{b}	1.095				100.9
H_{a}	2924^{b}	1.099				97.4
$H_{\rm s}-H_{\rm a}$	41	0.004				3.5
CH ³ CHO						
H_{s}	3002^{b}	160.1	$[1.079(5)]^{a,d}$	$[0.491]^d$	$[0.794]^d$	104.1
H_{a}	2945"	1.097	$[1.085(5)]^{a,d}$	$[0.518]^d$	$[0.813]^d$	99.2
$H_{\rm s}-H_{\rm a}$	57	-0.006	-0.006	-0.027	-0.109	4.9
(CH3)2CO						
Hs	3004"	160.1				104.3
H_{a}	2946^{b}	1.097				99.3
$H_{\rm s}-H_{\rm a}$	58	-0,006				5.0
B. triple bonds						
CH ₃ C≡CH	2958 ^e	1.095(5)	1.082(8),	0.515	0.807	100.3
			$[1.082(3)]^{a,d}$			
CH ₃ C=CCH ₃	2950/	1.096(5)				9.66
CH ₃ C-N	29859	1.093	1.080(5),	0.476	0.780	102.6
			$[1.082]^{a,d}$			
CH ₃ N≡C	2989 ⁿ	1.092(5)	$[1.081(3)]^{a,d}$	$[0.498]^d$	$[0.795]^d$	103.0
^a ref. 24; n/g.a.p. = ne	t/gross atomic popula	ation; ^b ref. 1; ^c ref. 21	; ^d unbracketed values: 6	optimization of all be	and lengths, bracketed	I values: optimization

only of r_{CH}; ^efef. 7; ⁷ref. 55, ⁹ref. 9; ⁸ref 56. ⁴⁵ J. C. Lavalley, personal communication. ⁵⁶ D. C. McKean, J. L. Duncan, and M. Mackenzie, *J. Mol. Structure*, 1977, **42**, 77.

419

	ν $ ^{b}/\mathrm{cm}^{-1}$	$\nu \perp b/\mathrm{cm}^{-1}$	$d\nu^{\mathfrak{c}/\mathrm{cm}^{-1}}$	${\it \Delta r_o^c/ \AA}$	⊿r _e ¢/Å	ΔD°_{298} c/
CH ₃ NO ₂	3065	3006	59	-0.006	- 0.005	kcal mol ⁻¹ 5.1
CH_3BF_2	2997	2937	60	-0.006	-0.006	5.2
(CH ₃ BO) ₃	2987	2927	60	-0.006	-0.006(4)	5.2
CH ₃ BCl ₂	2989	2916	73	-0.007(5)		6.3
(CH ₃) ₃ B	2980	2884	95	-0.010	- 0.007	8.2
^a data from ref. 57	7, 58; $b\nu_{\Box}^{*}$, ν_{\perp} signify	$\nu(CH)^{is}$ with hydroge	n respectively in sk	celetal plane, and at	right angles to it; $c \Delta \nu$	$= \nu_{\parallel} - \nu_{\perp}, \triangle r = r_{\parallel} - r_{\perp}$
etc.						-

Table 8 $\nu(CH)^{1s}$ and CH bond strength variations in CH₃-planar XY₂ compounds⁶

normal for but-1-ene, $(S_t^{Me} = +6, S_g^{Me} = -7 \text{ cm}^{-1})$ but that in acetone they are both zero within the experimental error.

G. Methyl Groups Attached to Planar XY₂ Skeletons.—A methyl group so attached experiences a very low potential barrier to its internal rotation, and the latter is essentially free at ordinary temperatures. The vibrational spectra of such molecules present unusual features, not all of which are understood, but the studies of CHD₂ substituted MeNO₂,⁵⁷ MeBF₂, MeBCl₂, (MeBO)₃, and Me₃B⁵⁸ have left no doubt that the strength of the CH bond varies during the internal rotation, such that it is a maximum when in the plane of the skeleton, and a minimum when at right angles to it, with a total variation of ν (CH)^{is} between 60 and 95 cm⁻¹, as shown in Table 8. While no CHD₂ data in the gas phase are yet available for toluene, the existing spectra⁵⁹ give a sure indication of a similar alteration in strength with torsional angle. Here again, as in CH₃—C=X compounds, hyperconjugation may be invoked to explain the weakness of CH_⊥ (out-of-plane), and it is certainly true that the difference ν (CH)₁ – ν (CH)_⊥ is greatest in BMe₃, where the boron $2p_{\pi}$ orbital is essentially empty.

The population analyses from the *ab initio* studies of Mallinson⁶⁰ on MeNO₂, MeBF₂, and Me₃B are illuminating. In all these cases, H_{||} has a gross population 0.008—0.009 e greater than that of H_⊥. The π orbitals of the NO₂, BF₂, and B groups have gained from each methyl group, respectively, 0.021, 0.032, and 0.032 e. These, however, must be contrasted with gains in the σ orbitals of 0.45 e for the NO₂, 0.43 e for BF₂, and a loss of 0.033 (per Me) for the boron in Me₃B. Clearly the π effect can be insignificant compared with the σ one. Moreover, the CH overlap population is *higher* for H_⊥ than it is for H_↓ in MeNO₂ and MeBF₂, so that some other reason for ν (CH)_{||} > ν (CH)_⊥ must be found. One factor in MeNO₂ may be the marked positive overlap between H_{||} and the *cis* oxygen. This is almost completely absent in MeBF₂, although the *cis* and *trans* effects of fluorine found in ethylenes (see Section 3E) should be present, affecting H_{||} here. However, for Me₃B, the CH overlap is slightly lower for H_⊥ than it is for H_{||}, so that it remains possible to postulate hyperconjugation as a factor contributing here to the largest ν_{\parallel} – ν_{\perp} difference found.

4 Conclusion

'Isolated' CH stretching frequencies constitute a unique source of quantitative information on the strengths of individual CH bonds. The present survey, limited as it is,* reveals patterns of conformational and substitutional effects which present new problems of chemical interpretation, although in part they are

- ⁵⁸ D. C. McKean, H. J. Becher, and F. Bramsiepe. Spectrochim. Acta, 1977, 33A, 951.
- ⁵⁹ A. B. Dempster, D. B. Powell, and N. Sheppard, Spectrochim. Acta, 1975, 31A, 245.
- ⁶⁰ P. D. Mallinson, personal communication.
- ⁶¹ E. D. Schmid and F. Langenbucher, Spectrochim. Acta, 1966, 22, 1621; see also ref 40.
- ⁶² H. Bürger and S. Biedermann, Spectrochim. Acta, 1972, 28A, 2283.

^{*}The vast fields of aromatic and organometallic compounds are only represented by a single paper in each case.^{61,62}

⁵⁷ D. C. McKean and R. A. Watt, J. Mol. Spectroscopy, 1976, 61, 184.

successfully predicted by quantum-mechanical methods. The new data have considerable implications also in the fields of chemical kinetics and of molecular geometry.

I am greatly indebted to Dr. P. D. Mallinson for advice and assistance in the use of the Gaussian 70 programme 236 (W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople) Quantum Chemistry Package exchange, Indiana University, 1971, as modified by himself and Dr. H. B. Schlegel, and to Dr. L. J. Bellamy for stimulating discussions and communication in advance of his own work.

I thank Professor N. Sheppard, F. R. S. for his interest and encouragement during this work, Dr. J. L. Duncan for helpful comment on the manuscript, and the University of London Computer Centre for a generous allocation of computing time.